1. Given the function

\[f(x) = 2e^{-x^2} \cos(4x), \]

compute \(z_1 = f(x) \) at 100 uniformly spaced values of \(x \) from 0 to 5. Compute \(z_2 = f(x) \) at 20 uniformly spaced values of \(x \) from 0 to 5. Plot \(z_1 \) and \(z_2 \) on the same axes. Use “interp1” to interpolate \(z_2 \) to the same sampling as \(z_1 \) using each of the available methods. Plot each of these interpolations on the previous axes.

2. Given the function

\[f(x,y) = 4 \cos \left(\frac{\pi}{6} x \right)^2 \cos \left(\frac{\pi}{8} y \right)^2 \sin \left(\frac{\pi}{3} x \right) \sin \left(\frac{\pi}{4} y \right) \]

compute \(z_1 = f(x,y) \) at 10 uniformly spaced values of \(x \) and \(y \) from -3 to 3. Use “interp2” to interpolate to a sampling of 100 uniformly spaced values of \(x \) and \(y \) using each of the available methods. Plot each of these interpolations on the same axes with the original data points.